Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry

2021 
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis. Mass spectrometry can be used for structural determination of N-glycans, but commonly requires prior derivatisation or comparison to a library of standards. Here logically-derived sequence tandem mass spectrometry allows for assignment of native N-glycans by analysis of successive fragmentation patterns without derivatisation and standards.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []