A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots

2018 
Abstract The use of thrombolytic therapies is limited by an increased risk of systemic hemorrhage due to lysis of hemostatic clots. We sought to develop a plasmin-based thrombolytic nanocage that efficiently dissolves the clot without causing systemic fibrinolysis or disrupting hemostatic clots. Here, we generated a double chambered short-length ferritin (sFt) construct that has an N-terminal region fused to multivalent clot targeting peptides (CLT: CNAGESSKNC) and a C-terminal end fused to a microplasmin (μPn); CLT recognizes fibrin–fibronectin complexes in clots, μPn efficiently dissolves clots, and the assembly of double chambered sFt (CLT-sFt-μPn) into nanocage structure protects the activated-μPn from its circulating inhibitors. Importantly, activated CLT-sFt-μPn thrombolytic nanocage showed a prolonged circulatory life over activated-μPn and efficiently lysed the preexisting clots in both arterial and venous thromboses models. Thus, CLT-sFt-μPn thrombolytic nanocage platform represents the prototype of a targeted clot-busting agent with high efficacy and safety over existing thrombolytic therapies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    12
    Citations
    NaN
    KQI
    []