IL-17–Producing Innate and Pathogen-Specific Tissue Resident Memory γδ T Cells Expand in the Lungs of Bordetella pertussis–Infected Mice

2016 
γδ T cells play a role in protective immunity to infection at mucosal surface, but also mediate pathology in certain autoimmune diseases through innate IL-17 production. Recent reports have suggested that γδ T cells can have memory analogous to conventional αβ T cells. In this study we have examined the role of γδ T cells in immunity to the respiratory pathogen Bordetella pertussis . γδ T cells, predominantly Vγ4 − γ1 − cells, produced IL-17 in the lungs as early as 2 h after infection. The bacterial burden during primary infection was significantly enhanced and the induction of antimicrobial peptides was reduced in the absence of early IL-17. A second peak of γδ T cells is detected in the lungs 7–14 d after challenge and these γδ T cells were pathogen specific. γδ T cells, exclusively Vγ4, from the lungs of infected but not naive mice produced IL-17 in response to heat-killed B. pertussis in the presence of APC. Furthermore, γδ T cells from the lungs of mice reinfected with B. pertussis produced significantly more IL-17 than γδ T cells from infected unprimed mice. γδ T cells with a tissue resident memory T cell phenotype (CD69 + CD103 + ) were expanded in the lungs during infection with B. pertussis and proliferated rapidly after rechallenge of convalescent mice. Our findings demonstrate that lung γδ T cells provide an early source of innate IL-17, which promotes antimicrobial peptide production, whereas pathogen-specific Vγ4 cells function in adaptive immunological memory against B. pertussis .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    60
    Citations
    NaN
    KQI
    []