HyperfineInteractions and Slow Spin Dynamics in Quasi-isotropicInP-based Core/Shell Colloidal Nanocrystals

2019 
Colloidal InP core nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial devices, such as display screens, the optical properties of InP nanocrystals and especially their relation to the exciton fine structures remain poorly understood. In this work, we show that the ensemble magneto-optical properties of InP-based core/shell nanocrystals investigated in strong magnetic fields up to 30 T are strikingly different from other colloidal nanostructures. Notably, the mixing of the lowest spin-forbidden dark exciton state with the nearest spin-allowed bright state does not occur up to the highest magnetic fields applied. This lack of mixing in an ensemble of nanocrystals suggests an anisotropy tolerance of InP nanocrystals. This striking property allowed us to unveil the slow spin dynamics between Zeeman sublevels (up to 400 ns at 15 T). Furthermore, we show that the unexpected magnetic-field-induced lengthening of the dark exciton lifetime ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    4
    Citations
    NaN
    KQI
    []