Altitudinal variation of the stable isotopes of snow in regions of high relief

2002 
A major discontinuity in the variation of δ 18 O (δD) with altitude in high mountains was first seen in data from Mount Logan, Yukon Territory, Canada (Holdsworth and others, 1991). The profile of δ vs altitude revealed three well-defined regions: (1) a lower, monotonic, fractionation sequence below ∼3 km; (2) a middle layer, typically 1-2 km thick, within which δ values are nearly constant or stepped with altitude, and (3) part of another fractionation sequence in the quasi-geostrophic flow region above ∼5.3 km. The middle region was inferred to be a mixed layer, combining moisture from regions (1) and (3). This type of structure is now seen to occur on other high-altitude mountains, including Cerro Aconcagua, Argentina, where observations reach almost 7 km. The new observations confirm the general occurrence of a multi-layered atmosphere during precipitation at high-altitude glacier sites. This structure is linked to synoptic-scale polar cyclones, where the middle layer is identified as being the signature of the warm-front zone. These results have implications for the common practice of using a specific, spatially derived, isotopic thermometer in the time domain for the paleoclimatic interpretation of high-altitude ice-core δ records.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    26
    Citations
    NaN
    KQI
    []