Investigation of Tie Bars Axial Force Demands in Composite Plate Shear Walls—Concrete Filled

2021 
Tie bars axial force demands due to concrete dilation and prying action were investigated through numerical studies. In the first part of this study, the Karagozian and Case Concrete model, which proved to provide reasonable in-plane flexural cyclic inelastic wall response while accounting for concrete dilation effect, was used to investigate the variation of confinement inside the infill concrete, the distribution of passive confining pressures at the steel–concrete interface, and the resulting tie bar axial force demands. Finite element analyses involving C-PSW/CF having different tie spacings, wall depths, and wall thicknesses were performed. In the second part of this study, the influence of plate local buckling on tie bar axial force demand was investigated and explained by prying action. A separate finite element study was performed to investigate the significance of prying action and equations were developed from free-body diagrams. The results showed the significance of the passive confining pressures due to concrete dilation, and prying action due to local plate buckling, on imparting axial forces in tie bars. Neither of these behavior are currently considered as design parameters for tie bars. The numerical analyses and results presented here are intended to provide useful insights and direction for the design and instrumentation of future C-PSW/CF experiments by the broader research community.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []