Water/Alcohol Soluble Thickness-Insensitive Hyperbranched Perylene Diimide Electron Transport Layer Improving the Efficiency of Organic Solar Cells

2019 
The electron transport layer (ETL) is very crucial for enhancing the device performance of polymer solar cells (PSCs). Meanwhile, thickness-insensitive and environment-friendly water/alcohol soluble processing are two essential requirements for large-scale roll-to-roll commercial application. Based on this, we designed and synthesized two new n-type ETLs with tetraethylene pentamine or butyl sulfonate sodium substituted tetraethylene pentamine as the branched side chains and high electron affinities perylene diimide (PDI) as the central core, named as PDIPN and PDIPNSO3Na. Encouragingly, both PDIPN and PDIPNSO3Na can effectively reduce the interfacial barrier and improve the interfacial contact. In addition, both of them can exhibit strong n-type self-doping effects, especially the PDIPN with higher density of negative charge. Consequently, compared to bare ITO, the PCE of the devices with ITO/PDIPN and ITO/PDIPNSO3Na ETLs has increased to 3–4 times. Our research results indicate that n-type self-doping PDI-based ETL PDIPN and PDIPNSO3Na could be promising candidates for ETL in environment-friendly water/alcohol soluble processing large-scale PSCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []