Graphene@Nanoporous Nickel Cathode for Li−O2 Batteries

2016 
Li−O2 batteries are a promising electrochemical energy-storage system with a sufficient energy density for all electric vehicles, with a one-charge driving distance comparable to conventional petrol cars. However, the practical implementations of Li−O2 batteries face many scientific and technological challenges. Among these is the development of high-performance cathode materials that can provide high capacity, low charge/discharge overpotentials and stable cycling stability. Here, we report a nanoporous Ni cathode covered by N-doped graphene and self-grown catalyst for rechargeable Li−O2 batteries. The novel hybrid cathode shows relatively low charge/discharge overpotentials, high volumetric capacity and long cycling lifetime, which may pave a new way for practical implementation of economic nanoporous metals as binder-free cathodes for high-performance Li−O2 batteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    9
    Citations
    NaN
    KQI
    []