Identifying Terminal Assembly Propensity of Amyloidal Peptides by Scanning Tunneling Microscopy

2019 
: The abnormal accumulation of beta-amyloids (Aβ) in brain is considered as a key initiating cause for Alzheimer's disease (AD) due to their richness in plaques and self-aggregate propensity. In recent studies, N-terminally extended Aβ peptides (NTE-Aβ) with the N-terminus originating prior to the canonical β-secretase cleavage site were found in humans and suggested to have possible relevance to AD. However, the effects of the extended N-terminus on the amyloidegenic structure and aggregation propensity have not been fully elucidated. Herein, we characterized the assembly structures of Aβ1-42, Aβ(-5)-42, Aβ(-10)-42 and Aβ(-15)-42 with both normal and reversed sequences on highly oriented pyrolytic graphite (HOPG) surfaces with scanning tunneling microscopy (STM). The molecularly resolved surface-mediated peptide assemblies enable identification of amyloidegenic fragments. The observations reveal that the assembly propensity of the C-terminal strand of Aβ1-42 is highly conserved and insensitive to N-terminal extensions. In contrast, different assembly structures of the N-terminal strand of Aβ variants can be observed with possible assignment of varied amyloidegenic fragments in the extended N-termini, which may contribute to the varied aggregation propensities of Aβ42 species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []