Computational design of short pulse laser driven iron opacity experiments

2017 
The resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emission requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    3
    Citations
    NaN
    KQI
    []