The Binding of Oxidized Low Density Lipoprotein (ox-LDL) to ox-LDL Receptor-1 Reduces the Intracellular Concentration of Nitric Oxide in Endothelial Cells through an Increased Production of Superoxide

2001 
Abstract Oxidized low density lipoprotein (ox-LDL) has been suggested to affect endothelium-dependent vascular tone through a decreased biological activity of endothelium-derived nitric oxide (NO). Oxidative inactivation of NO is regarded as an important cause of its decreased biological activity, and in this context superoxide (O⨪2) is known to inactivate NO in a chemical reaction during which peroxynitrite is formed. In this study we examined the effect of ox-LDL on the intracellular NO concentration in bovine aortic endothelial cells and whether this effect is influenced by ox-LDL binding to the endothelial receptor lectin-like ox-LDL receptor-1 (LOX-1) through the formation of reactive oxygen species and in particular of O⨪2. ox-LDL induced a significant dose-dependent decrease in intracellular NO concentration both in basal and stimulated conditions after less than 1 min of incubation with bovine aortic endothelial cells (p < 0.01). In the same experimental conditions ox-LDL also induced O⨪2 generation (p < 0.001). In the presence of radical scavengers and anti-LOX-1 monoclonal antibody, O⨪2formation induced by ox-LDL was reduced (p < 0.001) with a contemporary rise in intracellular NO concentration (p < 0.001). ox-LDL did not significantly modify the ability of endothelial nitric oxide synthase to metabolizel-arginine to l-citrulline. The results of this study show that one of the pathophysiological consequences of ox-LDL binding to LOX-1 may be the inactivation of NO through an increased cellular production of O⨪2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    304
    Citations
    NaN
    KQI
    []