[Mechanism on Enhanced Nitrogen Removal in Municipal Secondary Effluent via Internal-Electrolysis Constructed Wetlands at Low Temperature in Winter].

2018 
: Aiming at the low pollutant removal efficiency of constructed wetlands (CWs) at low temperature in winter, three laboratory-scale vertical-flow CWs, namely unplanted CWs, ordinary CWs, and internal-electrolysis CWs, were used to investigate the nitrogen removal efficiency of municipal secondary effluent when the water temperature was 3-12℃. Moreover, the mechanism of enhanced denitrification of the new wetland was revealed through analysis of the microbial community diversity and community structure. The results showed that the internal-electrolysis CWs could make better use of the carbon sources in the municipal secondary effluent and had a higher removal rate. The effluent TN concentration was maintained at about (9±0.29) mg·L-1. The average TN removal rate was 42.27%, which was 17.91% and 17.33% higher than those of the unplanted CWs and ordinary CWs, respectively. The microbial activity was detected using fluorescein diacetate (FDA), and the result revealed that the microbial activity of the internal-electrolysis CWs could reach 0.224 mg·g-1, which was 2.6 times and 3.4 times of that of the unplanted CWs and ordinary CWs, respectively. The microbial denitrification intensity of the internal-electrolysis CWs was 2.8 times and 3.3 times of that of the unplanted and ordinary CWs, respectively. The results of high-throughput sequencing showed that the microbial community diversity of the internal electrolysis CWs was higher than those of the unplanted and ordinary CWs. Denitrification microorganisms were detected, mainly Dechloromonas, Rhizobium, Hyphomicrobium, and Rhodobacter, as well as Thiobacillus, which is an autotrophic denitrifying bacterium. There were obvious advantages in the total amount of denitrifying microorganisms in the internal-electrolysis CWs, as the denitrification microorganisms accounted for 7.13% of the total microbial biomass, which was 3.8 times and 8.7 times of that of the unplanted CWs and ordinary CWs, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []