Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation

2015 
Abstract The effects of various fabrication parameters of our Mask Projection Excimer Laser StereoLithography (MPExSL) system were investigated. We demonstrate that laser parameters directly change the physical properties (stiffness, thermal degradation, and height/thickness) of the poly(propylene fumarate) (PFF) scaffold structures. The tested parameters were the number of pulses, fluence per pulse and laser repetition rate. We present a four-order tuning capability of MPExSL-fabricated structures' stiffness without altering the resin composition or using cumbersome post-treatment procedures. Thermogravimetric analysis and differential scanning calorimetry confirmed this tuning capability. Prototype-segmented scaffold designs are presented and analyzed to further expand the concept and exploit this in situ stiffness tuning capability of the scaffolds for tissue engineering and regenerative medicine applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    20
    Citations
    NaN
    KQI
    []