Modulation of excitatory synaptic transmissions by TRPV1 in the spinal trigeminal subnucleus caudalis neurons of neuropathic pain rats.

2021 
Abstract The present study examined contribution of the transient receptor potential vanilloid 1 channel (TRPV1) to the chronic orofacial pain. Bilateral partial nerve ligation (PNL) of the mental nerve, a branch of trigeminal nerve, was performed to induce neuropathic pain. The withdrawal threshold in response to mechanical stimulation of the lower lip skin was substantially reduced after the surgery in the PNL rats while it remained unchanged in the sham rats. This reduction in the PNL rats was alleviated by pregabalin injected intraperitoneally (10 mg/kg) and intracisternally (10, 30, 100 μg). Furthermore, an intracisternal injection of AMG9810, an antagonist of TRPV1, (1.5, 5.0 μg) attenuated the reduction of withdrawal threshold. Spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) were recorded from the spinal trigeminal subnucleus caudalis (Vc) neurons in the brainstem slice, which receive the orofacial nociceptive signals. In the PNL rats, superfusion of capsaicin (0.03, 0.1 μM) enhanced their frequency without effect on the amplitude and the highest concentration (0.3 μM) increased both the frequency and amplitude. In the sham rats, only 0.3 μM capsaicin increased their frequency. Thus, capsaicin-induced facilitation of sEPSCs and mEPSCs in the PNL rats was significantly stronger than that in the sham rats. AMG9810 (0.1 μM) attenuated the capsaicin's effect. Capsaicin was ineffective on the trigeminal tract-evoked EPSCs in the PNL and sham rats. These results suggest that the chronic orofacial pain in the PNL model results from facilitation of the spontaneous excitatory synaptic transmission in the Vc region through TRPV1 at least partly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []