Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

2017 
Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model—the multiscale multidomain (MSMD) model—was previously introduced to aid the scale-up of Li-ion material & electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. This paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains and thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. Example simulations are provided for several variants of GH electrode-domain models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    11
    Citations
    NaN
    KQI
    []