The Interaction Stability Analysis of a Multi-Inverter System Containing Different Types of Inverters

2018 
The existing stability investigations of the system containing different types of inverters are insufficient. The paper aims to reveal the more universal interaction stability mechanism of the system containing different types of inverters. Firstly, the multi-inverter system is decomposed into an admittance network (AN) and excitation sources. Then, the interaction between two different inverters, as well as the interaction between the inverter and the power grid, are analyzed by the root locus method. This reveals that the stability of the interaction between the inverter and the power grid is exclusively determined by AN. However, the stability of the interaction between different inverters not only depends on AN but also relies on whether the two inverters have common right-half plane (RHP) poles. To make the multi-inverter system stable, the following two criteria must be satisfied: (a) AN is stable and (b) any two different inverters do not have the same RHP poles. If criterion (a) is not satisfied, the harmonic resonance will arise in all currents. Resonant harmonics will only circulate among partial inverters and will not inject into the power grid if criterion (a) is satisfied but criterion (b) is not satisfied. Theoretical analysis is validated by simulation and experiment results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []