Studies on drug release kinetics and antibacterial activity against drug-resistant bacteria of cefotaxime sodium loaded layered double hydroxide–fenugreek nanohybrid

2018 
In the current work, we report the loading of cefotaxime sodium on Mg–Al layered double hydroxide (Cefo-LDH) and the formation of a nanohybrid with a fenugreek polymer (CLF nanohybrid). This nanohybrid was synthesized through the method of anion-exchange followed by sonication. The as-synthesized CLF nanohybrid was thoroughly characterized by XRD, FTIR and zeta potential measurements, which revealed that the cefotaxime drug was bound to the LDH surface. The drug loading capacities of Cefo-LDH and the CLF nanohybrid were found to be 85.6 and 72.5 μg mg−1, respectively. The drug released from the CLF nanohybrid demonstrates a controlled and sustained profile at pH 7.3 over a period of 72 h. The mechanism of drug release is explained by the first-order and parabolic kinetic models. The kinetic models suggest that the release of cefotaxime is dependent on the dissolution and diffusion of drug molecules in the physiological medium. At a concentration up to 1 mg mL−1, both Cefo-LDH and the CLF nanohybrid are seen to be biocompatible with murine fibroblast (L929) cells. Furthermore, antibacterial activity studies against the cefotaxime drug-resistant Escherichia coli (E. coli) strain show about 98% cell mortality with 1 mg mL−1 of the nanohybrid loaded with cefotaxime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    13
    Citations
    NaN
    KQI
    []