Preference Learning Using the Choquet Integral: The Case of Multipartite Ranking

2012 
We propose a novel method for preference learning or, more specifically, learning to rank, where the task is to learn a ranking model that takes a subset of alternatives as input and produces a ranking of these alternatives as output. Just like in the case of conventional classifier learning, training information is provided in the form of a set of labeled instances, with labels or, say, preference degrees taken from an ordered categorical scale. This setting is known as multipartite ranking in the literature. Our approach is based on the idea of using the (discrete) Choquet integral as an underlying model for representing ranking functions. Being an established aggregation function in fields such as multiple criteria decision making and information fusion, the Choquet integral offers a number of interesting properties that make it attractive from a machine learning perspective, too. The learning problem itself comes down to properly specifying the fuzzy measure on which the Choquet integral is defined. This problem is formalized as a margin maximization problem and solved by means of a cutting plane algorithm. The performance of our method is tested on a number of benchmark datasets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    55
    Citations
    NaN
    KQI
    []