Chiral Reaction Field with Thermally Invertible Helical Sense that Controls the Helicities of Conjugated Polymers

2020 
A chiral reaction field with thermally invertible helical sense enables control of the helicity of the reaction product, which is a central challenge in asymmetric synthesis that has yet to be overcome. A novel chiral compound comprising two types of chiral moieties with opposite helicities and temperature dependences is synthesized; this compound is added as a chiral dopant to a mixture of nematic liquid crystals to prepare a chiral nematic liquid crystal (N*-LC). The N*-LC containing the chiral dopant exhibits thermally invertible helicity to yield left- and right-handed helical senses at low and high temperatures, respectively. Interfacial polymerization of acetylene is achieved in the N*-LC by modulating the temperature. Helical polyacetylenes (H-PAs) that are synthesized at low (-12 degrees C) and high (28 degrees C) temperature show right- and left-handedness, respectively, in terms of the fibrils, fibril bundles, and spiral morphology. In addition, the helical sense of H-PA is opposite that of the N*-LC because of the peculiar polymerization mechanism for acetylene in the N*-LC. The current N*-LC is the first chiral reaction field that has not only the thermally invertible helical sense but also the chemical functions and stability needed to serve as the medium for polymer reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    9
    Citations
    NaN
    KQI
    []