Path planning for the Platonic solids on prescribed grids by edge-rolling.

2021 
The five Platonic solids-tetrahedron, cube, octahedron, dodecahedron, and icosahedron-have found many applications in mathematics, science, and art. Path planning for the Platonic solids had been suggested, but not validated, except for solving the rolling-cube puzzles for a cubic dice. We developed a path-planning algorithm based on the breadth-first-search algorithm that generates a shortest path for each Platonic solid to reach a desired pose, including position and orientation, from an initial one on prescribed grids by edge-rolling. While it is straightforward to generate triangular and square grids, various methods exist for regular-pentagon tiling. We chose the Penrose tiling because it has five-fold symmetry. We discovered that a tetrahedron could achieve only one orientation for a particular position.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    1
    Citations
    NaN
    KQI
    []