Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication

2017 
Summary The S. cerevisiae Pif1 helicase functions with DNA polymerase (Pol) δ in DNA synthesis during break-induced replication (BIR), a conserved pathway responsible for replication fork repair and telomere recombination. Pif1 interacts with the DNA polymerase processivity clamp PCNA, but the functional significance of the Pif1-PCNA complex remains to be elucidated. Here, we solve the crystal structure of PCNA in complex with a non-canonical PCNA-interacting motif in Pif1. The structure guides the construction of a Pif1 mutant that is deficient in PCNA interaction. This mutation impairs the ability of Pif1 to enhance DNA strand displacement synthesis by Pol δ in vitro and also the efficiency of BIR in cells. These results provide insights into the role of the Pif1-PCNA-Pol δ ensemble during DNA break repair by homologous recombination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    37
    Citations
    NaN
    KQI
    []