Self-Quenching and Slow Hole Injection May Limit the Efficiency in NiO-Based Dye-Sensitized Solar Cells

2018 
A series of bis-tridentate ruthenium complexes was designed to feature opposite localizations of their lowest metal-to-ligand charge transfer (MLCT) excited states, relative to a carboxylic acid that served as a binding group to mesoporous NiO. The purpose was to study the effect of MLCT direction on the rates of hole injection into NiO and subsequent charge recombination. Surprisingly, femtosecond-transient absorption spectroscopy showed that the two heteroleptic, cyclometalated complexes of this series did not inject holes into NiO, but their excited states were nevertheless quenched in a rapid process (on the time scale of hundreds of picoseconds). An identical result was obtained for the dyes on nonreactive ZrO2 and we therefore attribute the short MLCT lifetime to self-quenching, due the high surface concentrations of the dyes. We further show that self-quenching on this time scale can potentially compete with hole injection also for functional NiO sensitizers. A ruthenium polypyridine complex, which...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    10
    Citations
    NaN
    KQI
    []