Low temperature transcriptionally modulates natural peel degreening in lemon (Citrus limon L.) fruit independently of endogenous ethylene.

2020 
: Peel degreening is an important aspect of fruit ripening in many citrus fruit, and earlier studies have shown that it can be advanced by ethylene treatment or low temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To understand how natural peel degreening is regulated in lemon (Citrus limon L.) fruit, flavedo transcriptome and physiochemical changes in response to ethylene treatment or low temperature were studied. Ethylene treatment induced rapid peel degreening which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25oC, moderately low temperatures (5oC, 10oC, 15oC and 20oC) also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. On-tree peel degreening occurred along with environmental temperature drops, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    5
    Citations
    NaN
    KQI
    []