Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks

2020 
Air travel appears as particularly hazardous in a pandemic situation, since infected people can travel worldwide and could cause new breakouts in remote locations. The confined space conditions in the aircraft cabin necessitate a small physical distance between passengers and hence may boost virus transmissions. In our contribution, we implemented a transmission model in a virtual aircraft environment to evaluate the individual interactions between passengers during aircraft boarding and deboarding. Since no data for the transmission is currently available, we reasonably calibrated our model using a sample case from 2003. The simulation results show that standard boarding procedures create a substantial number of possible transmissions if a contagious passenger is present. The introduction of physical distances between passengers decreases the number of possible transmissions by approx. 75% for random boarding sequences, and could further decreased by more strict reduction of hand luggage items (less time for storage, compartment space is always available). If a second door is used for boarding and deboarding, the standard boarding times could be reached. Individual boarding strategies (by seat) could reduce the transmission potential to a minimum, but demand for complex pre-sorting of passengers. Our results also exhibit that deboarding consists of the highest transmission potential and only minor benefits from distance rules and hand luggage regulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    13
    Citations
    NaN
    KQI
    []