Benchmarking a Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Grid-Level Energy Storage

2018 
We present and benchmark an approximate dynamic programming algorithm that is capable of designing near-optimal control policies for a portfolio of heterogenous storage devices in a time-dependent environment, where wind supply, demand, and electricity prices may evolve stochastically. We found that the algorithm was able to design storage policies that are within 0.08% of optimal on deterministic models, and within 0.86% on stochastic models. We use the algorithm to analyze a dual-storage system with different capacities and losses, and show that the policy properly uses the low-loss device (which is typically much more expensive) for high-frequency variations. We close by demonstrating the algorithm on a five-device system. The algorithm easily scales to handle heterogeneous portfolios of storage devices distributed over the grid and more complex storage networks. The online supplement is available at https://doi.org/10.1287/ijoc.2017.0768.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    28
    Citations
    NaN
    KQI
    []