Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells

2012 
The directional growth of the pollen tube from the stigma to the embryo sac in the ovules is regulated by pollen-pistil interactions based on intercellular communication. Although pollen tube growth is regulated by the cytoplasmic Ca2+ concentration ([Ca2+]cyt), it is not known whether [Ca2+]cyt is involved in pollen tube guidance and reception. Using Arabidopsis expressing the GFP-based Ca2+-sensor yellow cameleon 3.60 (YC3.60) in pollen tubes and synergid cells, we monitored Ca2+ dynamics in these cells during pollen tube guidance and reception under semi-in vivo fertilization conditions. In the pollen tube growing towards the micropyle, pollen tubes initiated turning within 150 μm of the micropylar opening; the [Ca2+]cyt in these pollen tube tips was higher than in those not growing towards an ovule in assays with myb98 mutant ovules, in which pollen tube guidance is disrupted. These results suggest that attractants secreted from the ovules affect Ca2+ dynamics in the pollen tube. [Ca2+]cyt in synergid cells did not change when the pollen tube grew towards the micropyle or entered the ovule. Upon pollen tube arrival at the synergid cell, however, [Ca2+]cyt oscillation began at the micropylar pole of the synergid, spreading towards the chalazal pole. Finally, [Ca2+]cyt in the synergid cell reached a maximum at pollen tube rupture. These results suggest that signals from the pollen tube induce Ca2+ oscillations in synergid cells, and that this Ca2+ oscillation is involved in the interaction between the pollen tube and synergid cell.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    65
    Citations
    NaN
    KQI
    []