Petrography and geochemistry of lower carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting

2014 
Abstract Northeast Junggar occupies an important position that links East Junggar and Chinese Altai. Numerous magmatic and sedimentary rocks of the Paleozoic in this area recorded the final amalgamation processes of East Junggar and Chinese Altai. This study analyzes the petrological and geochemical characteristics of sandstones and mudstones from the Early Carboniferous Nanmingshui formation in Northeast Junggar. The provenance and tectonic setting of these clastic rocks are discussed. Petrography indicates that the composition and texture maturity of the sandstones are low. The components of the sandstones are mainly volcanic fragments (61–87%), feldspars (9–30%), and monocrystalline quartz (2–18%), with a few polycrystalline quartz and other minerals. Slice observation indicates that the majority of the volcanic fragments of sandstones are basic-intermediate volcanic rocks with a few dacite and felsic plutonic fragments. The detrital modes of the sandstones reflect that these sandstones are derived from undissected arcs. A low to moderate chemical index of alteration and the Al 2 O 3 –CaO *  + Na 2 O–K 2 O diagram reflect a low to moderate weathering degree in the source area. Trace and rare earth element (e.g., La, Th, Hf, Sc, Cr, Co, and Eu) contents and their ratios suggest that the source rocks of the clastic rocks are intermediate-basic rocks with some felsic rocks. Compared with sandstones, the source rocks for mudstones are more felsic. The petrography and geochemistry characteristics of the clastic rocks suggest that the proximal Dulate arc should be the primary source area. Mixing calculations based on REE data suggest that approximately two-thirds of the sandstone fragments are intermediate-basic volcanic rocks. The contents of the major and trace elements, as well as the stratum features, of the clastic rocks manifest that these clastic rocks resemble sedimentary rocks in a back-arc basin. The formation of this back-arc basin is caused by the southward subduction of the Zaysan–Erqis Ocean.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    51
    Citations
    NaN
    KQI
    []