A Multi-Sensor Data Fusion System for Laser Welding Process Monitoring

2020 
Most existing laser welding process monitoring (LWPM) technologies focus on detecting post-process defects. However, in sheet metal laser welding applications such as welding of electronic consumer products during mass production, in-process defect detection is more important. In this article, a compact LWPM system using multi-sensor data fusion to detect in-process defects has been built. This system can collect the time series of plasma intensity, light intensity and temperature data for feature analysis. To verify the system’s effectiveness, a plasma-light-temperature dataset has been compiled, which consists of 5,836 samples of nine classes, including one positive class and eight negative classes of typical in-process defects. A multi-sensor data fusion network based on a convolution neural network for in-process defect detection, called IDDNet, has also been proposed. Experimental results have demonstrated that IDDNet can achieve better multi-classification results than the support vector machine, with an overall accuracy of 97.57%. In particular, considering this monitoring process as a binary classification problem, IDDNet can achieve a 99.42% accuracy. Moreover, IDDNet can reach an average speed of 0.79ms per sample on a single GTX 1080ti graphics card, which meets the real-time requirement for industrial production. The proposed LWPM system has been successfully verified in real applications of sheet metal laser welding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []