Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part I. Mechanical Test Results

2009 
Creep-fatigue (CF) tests are carried out on a modified 9 pct Cr-1 pct Mo (P91) steel at 550 °C. These CF tests are strain controlled during the cyclic part of the stress-strain hysteresis loop and then load controlled when the stress is maintained at its maximum value, to produce a prescribed value of the creep strain before cyclic deformation is reversed under strain-controlled conditions. The observed cyclic softening implies that the applied creep stress continuously decreases with the number of cycles. However, the minimum creep rates measured at the end of the holding periods do not decrease when the applied stress decreases. The minimum creep rates measured at the end of these tests can be hundreds of times faster than those observed for the as-received material. This acceleration of creep rates can be to the microstructural coarsening and to the decrease of the dislocation density observed after fatigue and CF loadings. Cyclic creep tests consisting of very long holding periods interrupted by unloading/reloading are also carried out. These results suggest that cyclic loadings affect the creep lifetime and flow behavior only if a plastic strain is applied during cycling. Creep tests carried out on a material cyclically prestrained and fatigue tests carried out on a material previously deformed in creep confirm that the deterioration of the mechanical properties is much faster in fatigue and CF compared to creep.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    39
    Citations
    NaN
    KQI
    []