Reducing the “Stress”: Antioxidative Therapeutic and Material Approaches May Prevent Intracortical Microelectrode Failure

2015 
Despite the promising potential of intracortical microelectrodes, current designs suffer from short functional lifetimes, due in large part to the neuroinflammatory response to the implanted devices. An increasing body of literature is beginning to link neuroinflammatory-mediated oxidative damage to both the loss of neuronal structures around the implanted microelectrodes, and the degradation/corrosion of electrode materials. The goal of this viewpoint paper was to summarize the current progress toward understanding the role of oxidative damage to neurons and microelectrodes. Further, we seek to highlight the initial antioxidative approaches to mitigate oxidative damage, as well as suggest how current advances in macromolecular science for various applications may play a distinct role in enabling intracortical microelectrodes as reliable choices for long-term neuroprosthetic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    19
    Citations
    NaN
    KQI
    []