Contribution of Emotional and Motivational Neurocircuitry to Cue-Signaled Active Avoidance Learning
2014
Many animal and human subjects can learn to avoid punishment or noxious stimuli by exploiting the sensory cues predicting them. In cue-signaled active avoidance (AA) learning, subjects first learn about the predictive properties of cues and subsequently learn a behavioral strategy of an avoidance response (e.g., crossing a hurdle that divides a two-compartment cage in order to avoid a mild but unpleasant footshock). AA learning develops with fear reduction as an intervening variable (Mowrer and Lamoreaux, 1946; Miller, 1948). If execution of avoidance action occurs on the pursuit of seeking safety, an overlap of recruitments of neurocircuitry essential for reward processing and for avoidance can be expected on the basis of two-process theory. Recent insights from two-way AA (2WAA) studies, which integrate both Pavlovian and instrumental components, provide strong evidence for the recruitment of emotional circuitry centered on the amygdala and motivational circuitry centered around midbrain dopaminergic structures. In this review, we address the following: (1) the role of emotional neurocircuitry in the formation of AA, (2) the involvement of reward circuitry and its input-output pathways on AA, and (3) the possible serial and parallel processing within and between these circuitries.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
15
Citations
NaN
KQI