Clock model interpolation and symmetry breaking in O(2) models

2021 
We define an extended-O(2) model by adding a $\gamma \cos(q\varphi)$ term to the ordinary O(2) model with angular values restricted to a $2\pi$ interval. In the $\gamma \rightarrow \infty$ limit, the model becomes an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuation of the clock model for non-integer $q$. By shifting the $2\pi$ integration interval, the number of angles selected can change discontinuously and two cases need to be considered. What we call case $1$ has one more angle than what we call case $2$. We investigate this class of clock models in two space-time dimensions using Monte Carlo and tensor renormalization group methods. Both the specific heat and the magnetic susceptibility show a double-peak structure for fractional $q$. In case $1$, the small-$\beta$ peak is associated with a crossover, and the large-$\beta$ peak is associated with an Ising critical point, while both peaks are crossovers in case $2$. When $q$ is close to an integer and the system is close to the small-$\beta$ Berezinskii-Kosterlitz-Thouless transition, the system has a magnetic susceptibility that scales as $\sim 1 / (\Delta q)^{1 - 1/\delta'}$ with $\delta'$ estimates consistent with the magnetic critical exponent $\delta = 15$. The crossover peak and the Ising critical point move to Berezinskii-Kosterlitz-Thouless transition points with the same power-law scaling. A phase diagram for this model in the $(\beta, q)$ plane is sketched.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []