Synthesis, structure and properties of the manganese-doped polyoxotitanate cage [Ti18MnO30(OEt)20(MnPhen)3] (Phen = 1,10-phenanthroline)

2015 
The novel heterometallic polyoxotitanate cage [Ti18MnO30(OEt)20(MnPhen)3] (1), obtained by solvothermal reaction of Ti(OEt)4 with Mn(AcO)3·(H2O)2 and 1,10-phenanthroline (Phen) in EtOH, has a C3 symmetric core structure containing an interstitial tetrahedral MnII ion and is surrounded by three MnII(Phen) fragments. The molecular structure is retained in thin film electrodes of 1 deposited by solution drop-casting onto fluorinated tin oxide (FTO). Both solid state and solution phase electrochemical measurements show dual redox couples, consistent with the two distinct Mn coordination environments in the cage structure. Sintering of 1 in air at 600 °C produces a black crystalline solid which consists of Mn-doped TiO2 (mainly in the rutile phase) together with α-Mn2O3. Such a composite semiconductor has an optical band gap of ca. 1.80 eV, similar to that of α-Mn2O3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    17
    Citations
    NaN
    KQI
    []