PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy in a cardiac arrest rat model

2019 
Abstract Aims Mitochondrial dysfunction has been regarded as one of the hallmarks of cerebral ischemia-reperfusion injury. In previous studies, we have provided evidence that the extracellular signaling pathway (ERK) 1/2 inhibitor PD98059 improved the neurological deficits by modulating antioxidant and anti-apoptotic activities in rats subjected to cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Since oxidative stress can activate mitochondria-dependent apoptosis and autophagy, we further explored the effects of PD98059 on mitochondria involved with apoptosis and autophagy in rat CA model. Materials and methods We disposed PD98059 in CA/CPR rats, tested the mitochondrial-mediated apoptosis pathway in brain tissues at 24 h post-resuscitation by mitochondrial permeability transition pores (MPTP), cytochrome c (CytC), BCL-2, BAX, caspase-3, as well as autophagy by LC3, Beclin-1, and p62. Furthermore, we explored the relationship of dynamin-related protein 1 (Drp1) with apoptosis and autophagy. Key findings Our study showed that PD98059 decreased the openings of MPTP, CytC release, caspase3 activation, apoptotic indices, LC3-II, Beclin-1and increased P62. PD98059 also inhibited mitochondria-dependent apoptosis and the activity of autophagy in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. The generation of phosphorylated Drp1-616 was down-regulated accompanied by a decrease of TUNEL-positive cells and LC3 in dual immunostaining after PD98059 inhibited activation of ERK signaling pathway in a dose-dependent manner in rat cerebral cortices at 24 h post-resuscitation. Significance PD98059 protects the brain against mitochondrial-mediated apoptosis and autophagy at 24 h post-resuscitation in rats subjected to CA/CPR, which is linked with the downregulation of Drp1 expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    13
    Citations
    NaN
    KQI
    []