Integration of LiDAR and multispectral images for rapid exposure and earthquake vulnerability estimation. Application in Lorca, Spain

2019 
We present a procedure for assessing the urban exposure and seismic vulnerability that integrates LiDAR data with aerial and satellite images. It comprises three phases: first, we segment the satellite image to divide the study area into different urban patterns. Second, we extract building footprints and attributes that represent the type of building of each urban pattern. Finally, we assign the seismic vulnerability to each building using different machine-learning techniques: Decision trees, SVM, logistic regression and Bayesian networks. We apply the procedure to 826 buildings in the city of Lorca (SE Spain), where we count on a vulnerability database that we use as ground truth for the validation of results. The outcomes show that the machine learning techniques have similar performance, yielding vulnerability classification results with an accuracy of 77% - 80% (F1-Score). The procedure is scalable and can be replicated in different areas. It is especially interesting as a complement to conventional data gathering approaches for disaster risk applications in areas where field surveys need to be restricted to certain areas, dates or budget. Keywords LiDAR, satellite image, orthophoto, image segmentation, machine learning, earthquake vulnerability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []