Base-pairing energies of protonated nucleobase pairs and proton affinities of 1-methylated cytosines: model systems for the effects of the sugar moiety on the stability of DNA i-motif conformations.

2015 
Expansion of (CCG)n·(CGG)n trinucleotide repeats leads to hypermethylation of cytosine residues and results in Fragile X syndrome, the most common cause of inherited intellectual disability in humans. The (CCG)n·(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of noncanonical protonated nucleobase pairs of cytosine (C+·C). Previously, we investigated the effects of 5-methylation of cytosine on the base-pairing energies (BPEs) using threshold collision-induced dissociation (TCID) techniques. In the present work, we extend our investigations to include protonated homo- and heteronucleobase pairs of cytosine, 1-methylcytosine, 5-methylcytosine, and 1,5-dimethylcytosine. The 1-methyl substituent prevents most tautomerization processes of cytosine and serves as a mimic for the sugar moiety of DNA nucleotides. In contrast to permethylation of cytosine at the 5-position, 1-methylation is found to exert very little influence on the BPE. All modifications t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    22
    Citations
    NaN
    KQI
    []