High Current Density in Monolayer MoS2 Doped by AlOx.

2021 
Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional semiconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low-temperature ( 2 × 1013 cm-2, sheet resistance as low as ∼7 kΩ/□, and good contact resistance ∼480 Ω·μm in transistors from monolayer MoS2 grown by chemical vapor deposition. We also reach record current density of nearly 700 μA/μm (>110 MA/cm2) along this three-atom-thick semiconductor while preserving transistor on/off current ratio >106. The maximum current is ultimately limited by self-heating (SH) and could exceed 1 mA/μm with better device heat sinking. With their 0.1 nA/μm off-current, such doped MoS2 devices approach several low-power transistor metrics required by the international technology roadmap.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    13
    Citations
    NaN
    KQI
    []