Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction

2019 
Photolytic aging has been proposed as a major mass loss mechanism for atmospheric secondary organic aerosol (SOA). However, estimated mass loss rates vary by orders of magnitude, and their impacts on modeled SOA loadings and properties are highly uncertain. In this study, photolysis rates and composition changes of α-pinene SOA are analyzed in situ over multiple days in an environmental chamber. After an initial exponential decay (τ ∼ 22 h), the mass loss rate slows dramatically, with more than ∼70–90% of the SOA particulate mass undergoing an essentially negligible photolytic degradation. Scaled to ambient conditions, SOA undergoes rapid photolysis over only its first day in the atmosphere; beyond this, the remaining SOA is photo-recalcitrant, and photolysis ceases to be a major sink compared to wet deposition time scales. Thus, extrapolation of the initial photolysis loss rate to the entire aerosol mass may significantly overestimate the role of photolysis in the removal of atmospheric SOA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    14
    Citations
    NaN
    KQI
    []