Insights into the Stereospecificity in Papain-Mediated Chemoenzymatic Polymerization from Quantum Mechanics/Molecular Mechanics Simulations

2019 
Chemoenzymatic peptide synthesis is an efficient and clean method to generate polypeptides for new applications in the fields of biomedical and functional materials. However, this enzyme-mediated synthesis is dependent on the reaction rate of the protease biocatalyst, which is essentially determined by the natural substrate specificity of the enzyme. Papain, one of the most studied cysteine proteases, is extensively used for the chemoenzymatic synthesis of new polypeptides. Similar to most proteases, papain displays high stereospecificity toward l-amino acids, with limited reactivity for the d-stereoisomer counterparts. However, the incorporation of d-amino acids into peptides is a promising approach to increase their biostability by conferring intrinsic resistance to proteolysis. Herein, we determined the stereospecific-limiting step of the papain-mediated polymerization reaction with the chiral substrates l/d-alanine ethyl ester (Ala-OEt). Afterward, we used Quantum Mechanics/Molecular Mechanics (QM/MM)...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    6
    Citations
    NaN
    KQI
    []