An Ultrafast and Flexible LC-MS/MS System Paves the Way for Machine Learning Driven Sample Processing and Data Evaluation in Early Drug Discovery

2021 
RATIONALE Low speed and low flexibility of most LC-MS/MS approaches in early drug discovery delay sample analysis from routine in vivo studies within the same day. A high-throughput platform for the rapid quantification of drug compounds in various in vivo assays was developed and established in routine bioanalysis. METHODS Automated selection of an efficient and adequate LC method was realized by autonomous sample qualification for ultrafast batch gradients (9 s/sample) or for fast linear gradients (45 s/sample) if samples required chromatography. The hardware and software components of our Rapid and Integrated Analysis System (RIAS) were streamlined for increased analytical throughput via state-of-the-art automation while maintaining high analytical quality. RESULTS Online decision-making was based on a quick assay suitability test (AST), based on a small and dedicated sample set evaluated by two different strategies. 84% of the acquired data points were within ±30% accuracy and 93% of the deviations between the lower limit of quantitation (LLOQ) values were ≤2-fold compared to standard LC-MS/MS systems. Speed, flexibility and overall automation significantly improved. CONCLUSIONS The developed platform provided an analysis time of only 10 min (batch-mode) and 47 min (gradient-mode) per standard pharmacokinetic (PK) study (62 injections). Automation, data evaluation and results handling were optimized to pave the way for machine learning based on decision-making regarding the evaluation strategy of the AST.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []