Characterization of Biaxial and Triaxial Braids: Fiber Architecture and Mechanical Properties

2012 
Biaxial and triaxial carbon fiber braids with off-axis braiding angles of 30°, 45° and 55° are characterized with respect to their fiber architecture. All braids are produced on a round mandrel with constant cross section. Detailed geometric information on the different braids, like roving dimensions, roving shapes and the degree of nesting is given. The findings from measurements in photomicrographs are used to construct meso-model yarn architectures at the unit cell level which are then analyzed with the WiseTex software (Lomov et al. Compos. Sci. Technol. 60:2083–2095, 2000). The results of the models’ analysis with TexComp and comparison of mechanical properties with tests are consistent and essential for further steps in predictive modeling. Predictive modeling was also performed for biaxial braids based on the packing density in the material and parameters of the braiding process. The good conformance of the predictive models gives a validated starting point for development of braided structures concerning stiffness behavior. In addition, the information about the fiber architecture can be used for failure analysis on unit cell level.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    39
    Citations
    NaN
    KQI
    []