Abstract 3932: Tetraploid gliomas share molecular features with pilocytic astrocytomas

2011 
Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL We have performed expression profiling on 276 glioma samples of all histological subtypes, which resulted in the identification of seven distinct molecular subgroups. Interestingly, pilocytic astrocytomas (PAs) (n=6; adults) were assigned to one specific molecular cluster, together with four other, more malignant, gliomas. All the non-PAs were histologically diagnosed as higher grade gliomas with pilocytic features. Interestingly, there was a dramatic difference between survival of PAs and gliomas of other histological subtypes in this molecular cluster (>10.6 years vs. 3.4 (avg.) years; p = 0.03). Validation with an external dataset containing only PAs ([GSE12907][1]) showed that PAs are virtually always assigned to this molecular cluster, confirming the stability of the cluster. However, similar to our dataset, a subset of samples of both the REMBRANDT (8%) and TCGA (1%) datasets was also assigned to this molecular cluster. To further explore the differences between PAs and non-PAs in this molecular cluster, we performed genotyping using SNP 6.0 chip arrays. As reported previously, all PAs have only one larger genetic aberration; a focal amplification on locus 7q34, which is indicative for the presence of the tandem duplication KIAA1549-BRAF. One of the four samples of other histology also had this identical genetic aberration as PAs. The other (3/4) non-PA gliomas showed more genetic aberrations than the PAs. All patients harboring the KIAA1549-BRAF duplication were still alive (“survivors”) at the moment of writing this abstract (survival 10.6-19.6 years), whereas the remaining patients (“non-survivors”) all died within 0.44-2.7 years. High copy EGFR amplification was seen in none of the survivors but all of the other tumors. None of the samples in this cluster showed an IDH1-132H mutation. Closer inspection of the SNP arrays indicated that all non-survivors are tetraploid, whilst tumors of all survivors are near diploid (except for 3n on 7q34). The ploidy of all samples is currently validated using Fluorescence In Situ Hybridization (FISH). Polyploidy was not observed in any of the other molecular clusters. Validation with the REMBRANDT and the TCGA datasets showed that non-PAs assigned to this molecular cluster had a poor survival, similar to the non-PAs in our dataset. Interestingly, tetraploidy and EGFR amplification were also seen in the GBM samples from the TCGA that were assigned to this cluster. Gliomas from other molecular subtypes did not show tetraploidy on SNP chip data. In conclusion, we have discovered and validated a glioma subtype that shares molecular (RNA expression profile) and histological features with PAs. In spite of these similarities (and in contrast to the PAs), such tumors have a relatively poor prognosis. They are characterized by EGFR amplification and a near tetraploid cytogenetic profile. Identification of this specific subtype may have important therapeutic consequences. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3932. doi:10.1158/1538-7445.AM2011-3932 [1]: /lookup/external-ref?link_type=NCBIGEO&access_num=GSE12907&atom=%2Fcanres%2F71%2F8_Supplement%2F3932.atom
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []