Enhanced Long-term and Thermal Stability of Polymer Solar Cells in Air at High Humidity with the Formation of Unusual Quantum Dot Networks

2017 
Due to the practical applications of polymer solar cells (PSCs), their stability recently has received increasing attention. Herein, a new strategy was developed to largely enhance the long-term and thermal stability of PSCs in air with a relatively high humidity of 50–60% without any encapsulation. In this strategy, semiconductor PbS/CdS core/shell quantum dots (QDs) were incorporated into the photoactive blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). By replacing the initial ligands of oleic acid with halide ligands on the surface of PbS/CdS QDs via solution-phase ligand exchange, we were able to form unusual, continuous QD networks in the film of P3HT:PCBM, which effectively stabilized the photoactive layer. Air-processed PSCs based on the stabilized P3HT:PCBM film showed excellent long-term stability under high humidity, providing over 3% of power conversion efficiency (PCE) simultaneously. Around 91% of pristine PCE was retained after 30 days storage in high-h...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    12
    Citations
    NaN
    KQI
    []