Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production

2020 
Among all large-scale natural gas (NG) liquefaction processes, the mixed fluid cascade (MFC) process is recognized as a best-alternative option for the LNG production, mainly due its competitive performance. However, from a thermodynamic point of view, the MFC process is still far from its potential maximum energy efficiency due to non-optimal execution of design variables. Therefore, the energy efficiency enhancement of the MFC process remains an ongoing issue. The design optimization after fixing the main configuration of the process is one of the most economic, but challenging exercises during the design stages. In this study, shuffled complex evolution (SCE) is studied to find the optimal design of the MFC process corresponding to minimal energy consumption in refrigeration cycles. The MFC process is simulated using Aspen Hysys ® v10 and then coupled with the SCE approach, which is coded in MATLAB ® 2019a. The refrigerant composition and operating pressures for each cycle of the MFC process were optimized considering the approach temperature inside the LNG heat exchanger as a constraint. The resulting optimal MFC process saved 19.76% overall compression power and reduced the exergy destruction up to 28.76%. The thermodynamic efficiency (figure of merit) of the SCE-optimized process was 25% higher than that of the published base case. Furthermore, the optimization results also imply that there is a trade-off between the thermodynamic performance improvement and the computational cost (no. of iterations). In conclusion, SCE exhibited potential to improve the performance of highly nonlinear and complex processes such as LNG processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    6
    Citations
    NaN
    KQI
    []