A Roadmap to Integrate Digital Twins for Small and Medium-Sized Enterprises

2021 
In the last decade, Australian SMEs are steadily becoming more digitally engaged, but they still face issues and barriers to fully adopt Industry 4.0 (I4.0). Among the tools that I4.0 encompasses, digital twin (DT) and digital thread (DTH) technologies hold significant interest and value. Some of the challenges are the lack of expertise in developing the communication framework required for data collection, processing, and storing; concerns about data and cyber security; lack of knowledge of the digitization and visualisation of data; and value generation for businesses from the data. This article aims to demonstrate the feasibility of DT implementation for small and medium-sized enterprises (SMEs) by developing a framework based on simple and low-cost solutions and providing insight and guidance to overcome technological barriers. To do so, this paper first outlines the theoretical framework and its components, and subsequently discusses a simplified and generalised DT model of a real-world physical asset that demonstrates how these components function, how they are integrated and how they interact with each other. An experimental scenario is presented to transform data harvested from a resistance temperature detector sensor connected with a WAGO 750-8102 Programmable Logic Controller for data storage and analysis, predictive simulation and modelling. Our results demonstrate that sensor data could be readily integrated from Internet-of-Things (IoT) devices and enabling DT technologies, where users could view real time data and key performance indicators (KPIs) in the form of a 3D model. Data from both the sensor and 3D model are viewable in a comprehensive history log through a database. Via this technological demonstration, we provide several recommendations on software, hardware, and expertise that SMEs may adopt to assist with their DT implementations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []