Polyphenolic Secondary Metabolites Synergize the Activity of Commercial Antibiotics against Clinical Isolates of β-Lactamase-producing Klebsiella pneumoniae.

2016 
Emergence of worldwide antimicrobial resistance prompted us to study the resistance modifying potential of plant-derived dietary polyphenols, mainly caffeic acid, ellagic acid, epigallocatechin-3-gallate (EGCG) and quercetin. These compounds were studied in logical combination with clinically significant antibiotics (ciprofloxacin/gentamicin/tetracycline) against Klebsiella pneumoniae, after conducting phenotypic screening of a large number of clinical isolates and selecting the relevant strains possessing extended-spectrum β-lactamase (ESBL) and K. pneumoniae carbapenemase (KPC)-type carbapenemase enzymes only. The study demonstrated that EGCG and caffeic acid could synergize the activity of tested antibiotics within a major population of β-lactamase-producing K. pneumoniae. In spectrofluorimetric assay, ~17-fold greater ciprofloxacin accumulation was observed within K. pneumoniae cells pre-treated with EGCG in comparison with the untreated control, indicating its ability to synergize ciprofloxacin to restrain active drug-efflux. Further, electron micrograph of ESBL-producing K. pneumoniae clearly demonstrated the prospective efficacy of EGCG towards biofilm degradation. Copyright © 2015 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    12
    Citations
    NaN
    KQI
    []