Enhancing Chlorine Resistance and Water Permeability during Forward Osmosis Separation Using Superhydrophilic Materials with Conjugated Systems.

2020 
Poor resistance to free chlorine severely impairs the service of conventional polyamide (PA) membrane in water treatment. Here we design a series of superhydrophilic aromatic sulfonate materials (ASMs) comprising successively increasing conjugated systems and ionizable groups (ASM-1, ASM-2, ASM-3) to develop chlorine-resistant membrane via chemical modification. By altering the membrane physicochemical properties and surface structure, ASMs substantially improve the chlorine resistance and water permeability of membrane. With 0.5 M NaCl as the draw solution, all ASMs enhance membrane water fluxes by more than 60% relative to those of the nascent PA membrane in forward osmosis (FO) processes. After exposed to a 1000 ppm sodium hypochlorite solution for 2 to 8 h, the modified membranes exhibit smaller variations in FO performance than the PA membrane. Having the largest conjugated system and most sulfonate groups, ASM-3 enables the membrane to sustain a chlorination strength of up to 8000 ppm·h with an insignificant NaCl loss during the FO process, surpassing other recently developed PA membranes in chlorine resistance. These results manifest that the combination of a large conjugated system and ionizable group is key for imbuing membrane with excellent chlorine resistance and water permeability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    11
    Citations
    NaN
    KQI
    []