The role of the Jacobi Last Multiplier in Nonholonomic Systems and Almost Symplectic Structure

2013 
The relationship between Jacobi’s last multiplier (JLM) and nonholonomic systems endowed with the almost symplectic structure is elucidated in this paper. In particular, we present an algorithmic way to describe how the two form and almost Poisson structure associated to nonholonomic system, studied by L. Bates and his coworkers, can be mapped to symplectic form and canonical Poisson structure using JLM. We demonstrate how JLM can be used to map an integrable nonholonomic system to a Liouville integrable system. We map the toral fibration defined by the common level sets of the integrals of a Liouville integrable Hamiltonian system with a toral fibration coming from a completely integrable nonholonomic system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    5
    Citations
    NaN
    KQI
    []