A meta-analysis of Boolean network models reveals design principles of gene regulatory networks.
2020
Gene regulatory networks (GRNs) describe how a collection of genes governs the processes within a cell. Understanding how GRNs manage to consistently perform a particular function constitutes a key question in cell biology. GRNs are frequently modeled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data is sparse.
We generate an expandable database of published, expert-curated Boolean GRN models, and extracted the rules governing these networks. A meta-analysis of this diverse set of models enables us to identify fundamental design principles of GRNs.
The biological term canalization reflects a cell's ability to maintain a stable phenotype despite ongoing environmental perturbations. Accordingly, Boolean canalizing functions are functions where the output is already determined if a specific variable takes on its canalizing input, regardless of all other inputs. We provide a detailed analysis of the prevalence of canalization and show that most rules describing the regulatory logic are highly canalizing. Independent from this, we also find that most rules exhibit a high level of redundancy. An analysis of the prevalence of small network motifs, e.g. feed-forward loops or feedback loops, in the wiring diagram of the identified models reveals several highly abundant types of motifs, as well as a surprisingly high overabundance of negative regulations in complex feedback loops. Lastly, we provide the strongest evidence thus far in favor of the hypothesis that GRNs operate at the critical edge between order and chaos.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
1
Citations
NaN
KQI