Synergistic Effects of a Rhodium Catalyst on Particle-Stabilized Pickering Emulsions for the Hydroformylation of a Long-Chain Olefin

2019 
Hydrophilic silica nanoparticles (100 nm in length and of 20 nm diameter) and larger hollow Halloysite nanotubes (HNTs; 800 nm in length with an outer diameter of 50 nm and an inner diameter of 15 nm) are used to stabilize an oil-in-water emulsion. These particle-stabilized Pickering emulsions (PEs) are used for the hydroformylation of a long-chain olefin (1-dodecene). Rhodium (Rh) and the water-soluble ligand sulfonated 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene are used as catalyst. The emulsions are prepared by sonication and Ultra-Turrax in a specially designed vessel to protect the catalyst from oxygenation and to control the temperature of each sample during the preparation process. The Rh catalyst shows interfacial active behavior and strongly influences the mean droplet size of the emulsions, stability, wettability, and energy of detachment. Further, the Rh catalyst stabilizes an emulsion even in the absence of particles. In a mixture of Rh catalyst and particles, both attach at the interface...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    11
    Citations
    NaN
    KQI
    []